УДК 689.783 И.Е. Гутовский, А.В. Золин, С.В. Курков, В.А. Пантелеев, В.А. Хлебников

МОДЕЛИРОВАНИЕ ДИНАМИКИ РАСКРЫТИЯ ФЕРМЕННОГО КАРКАСА ТРАНСФОРМИРУЕМОГО РЕФЛЕКТОРА АНТЕННЫ КОСМИЧЕСКОГО БАЗИРОВАНИЯ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Гутовский Илья Евгеньевич, ведущий инженер, к.т.н. ООО «Научно-техническое предприятие «ДИП» Будапештский пр., 38/2, Санкт-Петербург, 192071, Россия. Тел.: (812)709 7076, E-mail: <u>dip_zenit@mail.ru</u>

Золин Анатолий Владимирович, м.н.с ОАО «Особое конструкторское бюро Московского энергетического института» ул. Красноказарменная, 14, Москва, 111250, Россия. Тел.: (495)362 5652, E-mail: <u>panteleev@okbmei.ru</u>

Курков Сергей Викторович, генеральный директор, к.т.н. ООО «Научно-техническое предприятие «ДИП» Будапештский пр., 38/2, Санкт-Петербург, 192071, Россия. Тел.: (812)709 7076, E-mail: <u>dip_zenit@mail.ru</u>

Пантелеев Валерий Анатольевич, начальник центра ОАО «Особое конструкторское бюро Московского энергетического института» ул. Красноказарменная, 14, Москва, 111250, Россия. Тел.: (495) 362 5652, E-mail: panteleev@okbmei.ru

Хлебников Денис Александрович, инж.-констр. 1 кат. ОАО «Особое конструкторское бюро Московского энергетического института» ул. Красноказарменная, 14, Москва, 111250, Россия. Тел.: (495) 362 5652, E-mail: panteleev@okbmei.ru

Аннотация

Рассматривается методика моделирования динамического процесса раскрытия ферменного каркаса трансформируемого рефлектора антенны космического базирования с использованием программного комплекса конечно-элементного моделирования «Зенит-95». Особенностью задачи

является учёт деформируемости всех элементов конструкции при значительном изменении её конфигурации.

Ключевые слова: метод конечных элементов, раскрывающиеся антенны, ферменный каркас, динамика раскрытия ...

I.E. Gutovsky, A.V. Zolin, S.V. Kurkov, V.A. Panteleev, D.A. Khlebnikov

FEA SIMULATION OF DEPLOYING DYNAMICS OF SPACE SELF-DEPLOYABLE ANTENNA TRUSS FRAMEWORK

Dr. Sergey V. Kurkov, director general, Dr. Ilya E. Gutovskiy, chief engineer «Research and Technical Enterprise «DIP», Budapest Ave, 38/2, St.-Petersburg, 192071, Russia Phone: 812-709-7076

Valery A. Panteleyev, head of the scientific and technical center, Anatoly V. Zolin, junior researcher, Denis A. Khlebnikov, design engineer category 1 JSC «Special research bureau of Moscow power engineering institute», 14, Krasnokazarmennaya st. , Moscow, 111250, Russia Phone: 495-362-5652

Abstract

Method of FEA Simulation of deploying dynamics of space self-deployable antenna truss framework with FEM Software «Zenit-95» are considered. The distinctive feature of this simulation is performance with due regard of components flexibility and significant configuration changes.

Key words: FEM, self-deployable antenna, truss framework, deploying dynamics ...

базирования важнейшими Антенны космического являются современных космических информационного элементами систем Предъявляемые требования обеспечения. настоящее время В к космическим аппаратам (КА) заставляют предусматривать значительные габариты систем. Данные требования антенных выполняются С использованием трансформируемых (раскрывающихся) рефлекторов. На данный момент применяется множество типов подобных раскрывающихся конструкций. Антенные системы, разрабатываемые в ОАО «ОКБ МЭИ» с 1972 года, имеют ферменную структуру, основанную на складывающихся стержневых элементах.

Ферменные рефлекторы ОАО «ОКБ МЭИ» представляют из себя сложный трансформируемый механизм с большим количеством элементов и связей. Основу фермы составляют складывающиеся тетраэдрические ячейки, состоящие из стержней и пружинно-шарнирных элементов. Антенные системы с такой конструкцией зеркал продемонстрировали хорошую устойчивость к воздействиям, характерным для орбитального полёта. Несколько образцов таких систем успешно прошли лётные испытания в составе КА «Ресурс-01», а также модуля «Природа» обитаемой космической станции «Мир». Накопленный опыт в области проектирования раскрывающихся антенн космического базирования позволяет ОАО «ОКБ МЭИ» занимать в России одну из лидирующих позиций в этой области.

Требования к массе конструкций КА заставляют разработчиков использовать лёгкие сплавы и композитные материалы, а также не позволяют иметь большой запас по прочности. Эти обстоятельства приводят к возрастанию роли вопросов расчётного и экспериментального определения прочности элементов конструкции.

Традиционно для расчёта прочности применяется метод конечных элементов (МКЭ). Данный метод хорошо себя зарекомендовал во многих отраслях мировой промышленности и является основой для подавляющего большинства современных программных комплексов.

Для раскрывающихся космических рефлекторов среди расчётных случаев особое место занимает расчёт динамики и прочности конструкции в процессе её раскрытия. В случае, если этот процесс протекает достаточно скоротечно и неуправляемо, возникающие напряжения могут оказаться определяющими для конструктивных параметров рефлектора. Высокие напряжения в элементах конструкции возникают в результате высоких значений их кинематических параметров, ударных взаимодействий при развёрнутом фиксации конструкции положении И колебаний, В Сложность возникающих после окончания процесса раскрытия. моделирования данного процесса заключается в том, что для этого непригодны программные комплексы, работающие на МКЭ в классической Большинство постановке. комплексов конечно-элементного его моделирования требуют соблюдения принципа неизменности начальных размеров и не могут быть использованы для расчёта механических систем, изменяющих свою конфигурацию (то есть механизмов).

Как правило, такая задача решается с помощью разделения расчёта динамики и прочности. Для создания кинематической модели используются программные комплексы анализа многокомпонентных систем (Multibody dynamics analysis), работающие на основе уравнений Лагранжа II рода. Результатами расчёта по такой методике являются кинематические параметры элементов конструкции и силы в их соединениях. Недостатком данной методики является невозможность прямого учёта упругости элементов системы. Далее по полученным значениям формируются нагрузки, которые затем используются в конечноэлементном моделировании какого-либо положения системы. Применение разделения расчётов динамики и прочности связано с большой трудоемкостью подобных работ из-за необходимости построения большого количества моделей и обменом данными между ними.

«Зенит-95» разработки Программный комплекс «Науч-000 но-техническое предприятие «ДИП» позволяет решить данную задачу прямым использованием МКЭ с применением динамических матриц. Для методики не является обязательным соблюдение такой принципа неизменности начальных размеров, и нет необходимости разделения расчётов на динамику и прочность. С помощью комплекса «Зенит-95» возможно создание универсальной модели, которая позволяет определять кинематические, динамические и прочностные характеристики в процессе одного расчёта.

В данной статье рассматриваются конструктивные особенности самораскрывающихся космических антенн, разрабатываемых в ОАО «ОКБ МЭИ», а также особенности моделирования динамического процесса их раскрытия на примере рефлектора, разработанного в ОАО «ОКБ МЭИ».

Рефлектор состоит из ферменного каркаса (ФК) зеркала, центральной стойки, узлов крепления зеркала на центральной стойке (устройство опорное, центральный шарнир, опора каркаса), устройств фиксации рефлектора в зачекованном положении, а также электрооборудования и различных вспомогательных узлов и деталей, расположенных на центральной опоре.

Формируемая рефлектором отражающая поверхность является аппроксимацией параболоида вращения с фокусным расстоянием 5000 мм. Данная поверхность образуется из треугольных ячеек ферменного каркаса рефлектора.

Ферменный каркас рефлектора состоит из двух поверхностей (лицевой и тыльной), образованных унифицированными элементами, близким к равносторонним треугольникам (рис. 1).

В узловых точках лицевой и тыльной сторон ферменного каркаса находятся шарнирные устройства (далее – узловые шарниры). К узловым шарнирам присоединены стержни, образующие поверхность, имеющие возможность складывания (далее - складывающиеся стержни), а также стержни, соединяющие лицевую и тыльную стороны ФК (далее – диагональные стержни). Фрагмент ферменного каркаса представлен на рис. 2.

Рис. 2. Фрагмент ферменного каркаса

В развернутом состоянии (рис. 2, *a*) стержни ферменной конструкции сходятся в узловых шарнирах 1, которые расположены на двух криволинейных поверхностях. В каждом узловом соединении сходятся по 3 диагональных стержня 4, обеспечивающих связь узловых точек вогнутой и выпуклой поверхностей каркаса, а также по 6 складывающихся стержней 3, которые непосредственно образуют

поверхности каркаса. К складывающимся стержням лицевой стороны прикреплена отражающая поверхность в виде трикотажного сетеполотна из микропроволоки. Складывающиеся стержни имеют в середине шарниры с пружинами 2. Базовая ячейка лицевой и тыльной поверхностей - треугольник, образованный тремя складывающимися стержнями, а фермы каркаса – тетраэдр. образованный базовая ячейка тремя диагональными стержнями и тремя складывающимися стержнями. Вся ферма каркаса образуется повторением этих базовых ячеек. Необходимая по радиотехническим соображениям форма поверхности вогнутой сети образуется за счет разной длины складывающихся стержней лицевой и тыльной сетей. Длина всех диагональных стержней одинакова.

Конечно-элементная модель (КЭМ) для расчета приведения рефлектора в рабочее положение представлена на рис. 3.

Рис. 3. КЭМ для расчета приведения рефлектора в рабочее положение

При построении КЭМ рефлектора для расчета динамических параметров при приведении в рабочее положение были использованы объемные конечные элементы (КЭ), стержневые КЭ, элементы «твердое тело», КЭ «сферический шарнир», КЭ «кулиса-направляющая», КЭ «связь конечной жесткости», КЭ «стержень с поворотом узлов», КЭ «фиксатор».

Объемными элементами моделируются корпусные детали опорного устройства, стержни и корпус опоры каркаса.

Стержневыми КЭ, с соответствующими геометрическими характеристиками сечений, моделируются вилки, петли и все трубчатые сечения элементов конструкции рефлектора.

Инерционные характеристики массы сетеполотна учитываются путем ввода дополнительных характеристик (погонная масса) трубчатых стержней лицевой поверхности рефлектора.

Элементы «твердое тело» используются для моделирования сосредоточенных масс и для соединения корпусов из объемных элементов со стержнями, моделирующими центральную стойку рефлектора.

КЭ «сферический шарнир» моделирует шарнирные соединения элементов конструкции рефлектора. Данный элемент позволяет учитывать при расчетах трение в шарнирах.

КЭ «кулиса-направляющая» используется для моделирования шпоночного соединения опоры каркаса с центральной стойкой рефлектора (в части направления движения опоры каркаса вдоль центральной стойки рефлектора).

КЭ «связь конечной жесткости» используется для моделирования шпоночного соединения опоры каркаса с центральной стойкой рефлектора (в части передачи крутящего момента на центральную стойку).

КЭ «стержень с поворотом узлов» обеспечивает передачу крутящего момента заданного в глобальной системе координат КЭМ в локальную систему координат связанную с осью шарнирного соединения, совершающего большие пространственные перемещения.

Для ограничения углового относительного движения складывающихся стержней рефлектора после приведения их в рабочее положение используется КЭ «фиксатор». Этот же элемент используется для моделирования пружин кручения, установленных в узловых и стержневых шарнирах каркаса (вводится в третьем узле КЭ «стержень с поворотом узлов»).

Построение данной КЭМ происходило поэтапно - наиболее нагруженные жесткостные модели элементов конструкции рефлектора заменялись более подробными расчетными моделями.

В результате расчетов динамических параметров при раскрытии рефлектора были получены параметры движения, усилия и напряжения в элементах КЭМ на каждом шаге расчета.

На рис. 4 представлена КЭМ рефлектора в процессе раскрытия в различные моменты времени.

На рис. 5 представлен график зависимости от времени реакции в закреплении центральной стойки рефлектора. Направление реакции - ось центральной стойки рефлектора (OZ).

На рис. 6 представлен график зависимости от времени напряжений изгиба в углепластовой трубке Ø14×0,85.

На рис. 7 представлен график зависимости от времени эквивалентных напряжений в узловом шарнире.

На рис. 8 представлено напряженное состояние узлового шарнира в момент возникновения максимальных эквивалентных напряжений.

При расчете контролировалось время полного раскрытия рефлектора (самая поздняя постановка на упор стержня в стержневом шарнире). На рис. 9 представлен график зависимости от времени углового перемещения последнего раскрытого стержня относительно оси его стержневого шарнира.

Рис. 4. Положение КЭМ рефлектора в процессе раскрытия в различные моменты времени

Рис. 5. График зависимости от времени реакции в закреплении центральной стойки рефлектора

Рис. 6. График зависимости от времени напряжений изгиба в углепластовой трубке

Рис. 7. График зависимости от времени эквивалентных напряжений в узловом шарнире

Рис. 8. Напряженное состояние узлового шарнира в момент возникновения максимальных эквивалентных напряжений

Рис. 9. График зависимости от времени углового перемещения последнего приведенного в рабочее положение стержня относительно оси стержневого шарнира

Полученные результаты расчёта позволяют сделать вывод о соблюдении условий прочности всех элементов конструкции и дать положительное заключение о правильности принятых технических решений с точки зрения расчётной прочности, жесткости и надежной фиксации рефлектора в рабочем положении.

СПИСОК ЛИТЕРАТУРЫ

- 1. Курков С.В. Метод конечных элементов в задачах динамики механизмов и приводов. СПб.: Политехника, 1991.
- 2. Крагельский И.В. Трение, изнашивание и смазка. Справочник. Книга 1. М.: Машиностроение, 1978.
- 3. Баничук Н.В. и др. Механика больших космических конструкций. М.: Факториал Пресс, 1997.